Claim:A+B=r2 where r is the radius of the semicircle.
Proof:Let r be the radius of the semicircle and PA, PB be the points of contact with the semicircle as shown below.
The y-positions of PA and PB are equal to the side lengths of squares A and B. If θA and θB represent the angles of vectors PA and PB respectively, we can write A and B as,
AB=(PAy)2=(rsinθA)2=(PBy)2=(rsinθB)2Finding the sum,
A+B=(rsinθA)2+(rsinθB)2=r2sin2θA+r2sin2θB=r2(sin2θA+sin2θB)The total area is equal to r2 multiplied by sin2θA+sin2θB.
To evaluate sin2θA+sin2θB, notice that the total base of the squares is equal to the sum of the square heights.
This is represented in equation form like so,
∣PAx∣+∣PBx∣=∣PAy∣+∣PBy∣We can evaluate this to determine a relationship between θA and θB. Remember sum-to-product identities: sinθ+sinφ=2sin(2θ+φ)cos(2θ−φ) and cosθ−cosφ=−2sin(2θ+φ)sin(2θ−φ).
∣PAx∣+∣PBx∣−PAx+PBx−rcosθA+rcosθBcosθB−cosθA−2sin(2θB+θA)sin(2θB−θA)−sin(2θB−θA)sin(−2θB−θA)cos(2π+2θB−θA)2π+2θB−θAπ+θB−θAπ2πθB=∣PAy∣+∣PBy∣=PAy+PBy=rsinθA+rsinθB=sinθA+sinθB=2sin(2θA+θB)cos(2θA−θB)=cos(2θA−θB)=cos(2θA−θB)=cos(2θA−θB)=2θA−θB=θA−θB=2θA−2θB=θA−θB=θA−2πPlugging into our original equation,
A+B=r2(sin2θA+sin2θB)=r2(sin2θA+sin2(θA−2π))=r2(sin2θA+cos2θA)=r2QED