Claim: Solutions are f ( x ) = 0 f(x)=0 f ( x ) = 0 and f ( x ) = x + c f(x)=x+c f ( x ) = x + c where c ∈ R c\in\mathbb{R} c ∈ R
Proof: Let y = 0 y=0 y = 0 ,
f ( f ( x ) ) = f ( x ) + f ( 0 ) \begin{aligned}
f(f(x)) = f(x) + f(0)
\end{aligned} f ( f ( x )) = f ( x ) + f ( 0 ) Replacing x x x with x + y x+y x + y and using the original equation,
f ( f ( x + y ) ) = f ( x + y ) + f ( 0 ) f ( x ) + f ( y ) = f ( x + y ) + f ( 0 ) f ( x + y ) = f ( x ) + f ( y ) − f ( 0 ) \begin{aligned}
f(f(x+y)) &= f(x+y) + f(0)\\
f(x) + f(y) &= f(x+y) + f(0)\\
f(x+y) &= f(x) + f(y) - f(0)
\end{aligned} f ( f ( x + y )) f ( x ) + f ( y ) f ( x + y ) = f ( x + y ) + f ( 0 ) = f ( x + y ) + f ( 0 ) = f ( x ) + f ( y ) − f ( 0 ) Therefore f ( x + y ) f(x+y) f ( x + y ) is related to f ( x ) + f ( y ) f(x)+f(y) f ( x ) + f ( y ) in addition to some constant. This should remind you of Cauchy's Functional Equation .
Let g ( x ) = f ( x ) − f ( 0 ) g(x) = f(x) - f(0) g ( x ) = f ( x ) − f ( 0 ) , then,
g ( x + y ) = f ( x + y ) − f ( 0 ) = f ( x ) + f ( y ) − f ( 0 ) − f ( 0 ) = [ f ( x ) − f ( 0 ) ] + [ f ( y ) − f ( 0 ) ] = g ( x ) + g ( y ) \begin{aligned}
g(x+y) &= f(x+y) - f(0)\\
&= f(x) + f(y) - f(0) - f(0)\\
&= [f(x)-f(0)] + [f(y)-f(0)]\\
&= g(x) + g(y)
\end{aligned} g ( x + y ) = f ( x + y ) − f ( 0 ) = f ( x ) + f ( y ) − f ( 0 ) − f ( 0 ) = [ f ( x ) − f ( 0 )] + [ f ( y ) − f ( 0 )] = g ( x ) + g ( y ) Since f f f is continuous, g g g must also be continuous. Therefore g ( x + y ) = g ( x ) + g ( y ) g(x+y)=g(x)+g(y) g ( x + y ) = g ( x ) + g ( y ) is Cauchy's equation where all solutions are given by g ( x ) = k x g(x) = kx g ( x ) = k x where k ∈ R k\in\mathbb{R} k ∈ R .
Proof for g(x)=kx
Claim: If g ( x + y ) = g ( x ) + g ( y ) g(x+y)=g(x)+g(y) g ( x + y ) = g ( x ) + g ( y ) , then g ( x ) = k x g(x)=kx g ( x ) = k x where g : R → R g:\mathbb{R}\rightarrow\mathbb{R} g : R → R is continuous and x , y , k ∈ R x,y,k\in\mathbb{R} x , y , k ∈ R .
Proof: Let y = 0 y=0 y = 0 , then,
g ( x ) = g ( x ) + g ( 0 ) g ( 0 ) = 0 \begin{aligned}
g(x) &= g(x) + g(0)\\
g(0) &= 0
\end{aligned} g ( x ) g ( 0 ) = g ( x ) + g ( 0 ) = 0 Let y = x y=x y = x , then,
g ( x + x ) = g ( x ) + g ( x ) g ( 2 x ) = 2 g ( x ) \begin{aligned}
g(x+x) &= g(x) + g(x)\\
g(2x) &= 2g(x)\\
\end{aligned} g ( x + x ) g ( 2 x ) = g ( x ) + g ( x ) = 2 g ( x ) By letting y = x , 2 x , 3 x , . . . y=x,2x,3x,... y = x , 2 x , 3 x , ... and repeating the step above, we can prove by induction that g ( k x ) = k g ( x ) g(kx)=kg(x) g ( k x ) = k g ( x ) for any positive integer k k k .
Expanding this idea to negative integers, let y = − x y=-x y = − x ,
g ( x − x ) = g ( x ) + g ( − x ) g ( 0 ) = g ( x ) + g ( − x ) 0 = g ( x ) + g ( − x ) g ( − x ) = − g ( x ) \begin{aligned}
g(x-x) &= g(x) + g(-x)\\
g(0) &= g(x) + g(-x)\\
0 &= g(x) + g(-x)\\
g(-x) &= -g(x)\\
\end{aligned} g ( x − x ) g ( 0 ) 0 g ( − x ) = g ( x ) + g ( − x ) = g ( x ) + g ( − x ) = g ( x ) + g ( − x ) = − g ( x ) Expanding this idea to rational numbers, let x = m n x=\frac{m}{n} x = n m ,
g ( m n ) = m g ( 1 n ) g ( 1 n ) = 1 n g ( 1 ) \begin{aligned}
g(\frac{m}{n}) &= mg(\frac{1}{n})\\
g(\frac{1}{n}) &= \frac{1}{n} g(1)\\
\end{aligned} g ( n m ) g ( n 1 ) = m g ( n 1 ) = n 1 g ( 1 ) Let u = 1 n u=\frac{1}{n} u = n 1 , then g ( u ) = u g ( 1 ) g(u)=ug(1) g ( u ) = ug ( 1 ) and so g ( x ) g(x) g ( x ) must be of the form k x kx k x for all rationals.
Since f f f is continuous, we can define a rational sequence x n x_n x n such that lim n → ∞ x n = x \lim_{n \to \infty}x_n=x lim n → ∞ x n = x where x x x is any real number.
lim n → ∞ [ g ( x n ) = x n g ( 1 ) ] g ( x ) = x g ( 1 ) □ \begin{aligned}
\lim_{n \to \infty}[g(x_n) &= x_n g(1)]\\
g(x) &= x g(1) \qquad \Box\\
\end{aligned} n → ∞ lim [ g ( x n ) g ( x ) = x n g ( 1 )] = xg ( 1 ) □ Since g ( x ) = k x g(x)=kx g ( x ) = k x , we can substitute that into the original equation g ( x ) = f ( x ) − f ( 0 ) g(x)=f(x)-f(0) g ( x ) = f ( x ) − f ( 0 ) to work out that f ( x ) = k x + f ( 0 ) f(x)=kx+f(0) f ( x ) = k x + f ( 0 ) .
Since f ( 0 ) f(0) f ( 0 ) is a constant, let f ( 0 ) = c f(0)=c f ( 0 ) = c so that we can write f ( x ) = k x + c f(x)=kx+c f ( x ) = k x + c . Then substitute into the left and right hand side of the original function so that we can compare.
f ( f ( x + y ) ) = f ( k ( x + y ) + c ) = k ( k ( x + y ) + c ) + c = k 2 ( x + y ) + c k + c (LHS) \begin{aligned}
\tag{LHS}
f(f(x+y)) &= f(k(x+y)+c) \\
&= k(k(x+y)+c)+c\\
&= k^2(x+y)+ck+c
\end{aligned} f ( f ( x + y )) = f ( k ( x + y ) + c ) = k ( k ( x + y ) + c ) + c = k 2 ( x + y ) + c k + c ( LHS ) f ( x ) + f ( y ) = k x + c + k y + c = k ( x + y ) + 2 c (RHS) \begin{aligned}
\tag{RHS}
f(x) + f(y) &= kx+c+ky+c \\
&= k(x+y)+2c
\end{aligned} f ( x ) + f ( y ) = k x + c + k y + c = k ( x + y ) + 2 c ( RHS ) By equating terms, we get the equations k 2 = k k^2=k k 2 = k and 2 c = c k + c 2c=ck+c 2 c = c k + c . k 2 = k k^2=k k 2 = k tells us that k k k equals either 0 0 0 or 1 1 1 . If we analyze both of these cases, we can find all solutions.
Assume k = 0 k=0 k = 0 , then f ( x ) = c f(x)=c f ( x ) = c ,
f ( f ( x + y ) ) = f ( c ) = c (LHS) \begin{aligned}
\tag{LHS}
f(f(x+y)) = f(c) = c
\end{aligned} f ( f ( x + y )) = f ( c ) = c ( LHS ) f ( x ) + f ( y ) = c + c = 2 c (RHS) \begin{aligned}
\tag{RHS}
f(x) + f(y) &= c+c = 2c
\end{aligned} f ( x ) + f ( y ) = c + c = 2 c ( RHS ) Equating the two, we find that c = 2 c c=2c c = 2 c which is only possible if c = 0 c=0 c = 0 . Therefore, if k = 0 k=0 k = 0 , then c = 0 c=0 c = 0 . This implies that f ( x ) = 0 f(x)=0 f ( x ) = 0 is a solution.
Assume k = 1 k=1 k = 1 , then f ( x ) = x + c f(x)=x+c f ( x ) = x + c ,
f ( f ( x + y ) ) = f ( x + y + c ) = x + y + 2 c (LHS) \begin{aligned}
\tag{LHS}
f(f(x+y)) = f(x+y+c) = x+y+2c
\end{aligned} f ( f ( x + y )) = f ( x + y + c ) = x + y + 2 c ( LHS ) f ( x ) + f ( y ) = x + c + y + c = x + y + 2 c (RHS) \begin{aligned}
\tag{RHS}
f(x) + f(y) &= x+c+y+c = x+y+2c
\end{aligned} f ( x ) + f ( y ) = x + c + y + c = x + y + 2 c ( RHS ) Since the right and left hand side are equal, we have shown that f ( x ) = x + c f(x)=x+c f ( x ) = x + c is also a solution. □ \Box □