Problem 3

Nested Functions

Answer Format: Proof

Let R\mathbb{R} define the set of real numbers. Find all continuous functions f:RRf: \mathbb{R} \rightarrow \mathbb{R} such that f(f(x+y))=f(x)+f(y)f(f(x+y))=f(x)+f(y).

Claim:

Solutions are f(x)=0f(x)=0 and f(x)=x+cf(x)=x+c where cRc\in\mathbb{R}

Proof:

Let y=0y=0,

f(f(x))=f(x)+f(0) \begin{aligned} f(f(x)) = f(x) + f(0) \end{aligned}

Replacing xx with x+yx+y and using the original equation,

f(f(x+y))=f(x+y)+f(0)f(x)+f(y)=f(x+y)+f(0)f(x+y)=f(x)+f(y)f(0) \begin{aligned} f(f(x+y)) &= f(x+y) + f(0)\\ f(x) + f(y) &= f(x+y) + f(0)\\ f(x+y) &= f(x) + f(y) - f(0) \end{aligned}

Therefore f(x+y)f(x+y) is related to f(x)+f(y)f(x)+f(y) in addition to some constant. This should remind you of Cauchy's Functional Equation.


Let g(x)=f(x)f(0)g(x) = f(x) - f(0), then,

g(x+y)=f(x+y)f(0)=f(x)+f(y)f(0)f(0)=[f(x)f(0)]+[f(y)f(0)]=g(x)+g(y) \begin{aligned} g(x+y) &= f(x+y) - f(0)\\ &= f(x) + f(y) - f(0) - f(0)\\ &= [f(x)-f(0)] + [f(y)-f(0)]\\ &= g(x) + g(y) \end{aligned}

Since ff is continuous, gg must also be continuous. Therefore g(x+y)=g(x)+g(y)g(x+y)=g(x)+g(y) is Cauchy's equation where all solutions are given by g(x)=kxg(x) = kx where kRk\in\mathbb{R}.


Claim:

If g(x+y)=g(x)+g(y)g(x+y)=g(x)+g(y), then g(x)=kxg(x)=kx where g:RRg:\mathbb{R}\rightarrow\mathbb{R} is continuous and x,y,kRx,y,k\in\mathbb{R}.

Proof:

Let y=0y=0, then,

g(x)=g(x)+g(0)g(0)=0 \begin{aligned} g(x) &= g(x) + g(0)\\ g(0) &= 0 \end{aligned}

Let y=xy=x, then,

g(x+x)=g(x)+g(x)g(2x)=2g(x) \begin{aligned} g(x+x) &= g(x) + g(x)\\ g(2x) &= 2g(x)\\ \end{aligned}

By letting y=x,2x,3x,...y=x,2x,3x,... and repeating the step above, we can prove by induction that g(kx)=kg(x)g(kx)=kg(x) for any positive integer kk.


Expanding this idea to negative integers, let y=xy=-x,

g(xx)=g(x)+g(x)g(0)=g(x)+g(x)0=g(x)+g(x)g(x)=g(x) \begin{aligned} g(x-x) &= g(x) + g(-x)\\ g(0) &= g(x) + g(-x)\\ 0 &= g(x) + g(-x)\\ g(-x) &= -g(x)\\ \end{aligned}

Expanding this idea to rational numbers, let x=mnx=\frac{m}{n},

g(mn)=mg(1n)g(1n)=1ng(1) \begin{aligned} g(\frac{m}{n}) &= mg(\frac{1}{n})\\ g(\frac{1}{n}) &= \frac{1}{n} g(1)\\ \end{aligned}

Let u=1nu=\frac{1}{n}, then g(u)=ug(1)g(u)=ug(1) and so g(x)g(x) must be of the form kxkx for all rationals.


Since ff is continuous, we can define a rational sequence xnx_n such that limnxn=x\lim_{n \to \infty}x_n=x where xx is any real number.

limn[g(xn)=xng(1)]g(x)=xg(1) \begin{aligned} \lim_{n \to \infty}[g(x_n) &= x_n g(1)]\\ g(x) &= x g(1) \qquad \Box\\ \end{aligned}

Since g(x)=kxg(x)=kx, we can substitute that into the original equation g(x)=f(x)f(0)g(x)=f(x)-f(0) to work out that f(x)=kx+f(0)f(x)=kx+f(0).


Since f(0)f(0) is a constant, let f(0)=cf(0)=c so that we can write f(x)=kx+cf(x)=kx+c. Then substitute into the left and right hand side of the original function so that we can compare.

f(f(x+y))=f(k(x+y)+c)=k(k(x+y)+c)+c=k2(x+y)+ck+c(LHS) \begin{aligned} \tag{LHS} f(f(x+y)) &= f(k(x+y)+c) \\ &= k(k(x+y)+c)+c\\ &= k^2(x+y)+ck+c \end{aligned}
f(x)+f(y)=kx+c+ky+c=k(x+y)+2c(RHS) \begin{aligned} \tag{RHS} f(x) + f(y) &= kx+c+ky+c \\ &= k(x+y)+2c \end{aligned}

By equating terms, we get the equations k2=kk^2=k and 2c=ck+c2c=ck+c. k2=kk^2=k tells us that kk equals either 00 or 11. If we analyze both of these cases, we can find all solutions.


Assume k=0k=0, then f(x)=cf(x)=c,

f(f(x+y))=f(c)=c(LHS) \begin{aligned} \tag{LHS} f(f(x+y)) = f(c) = c \end{aligned}f(x)+f(y)=c+c=2c(RHS) \begin{aligned} \tag{RHS} f(x) + f(y) &= c+c = 2c \end{aligned}

Equating the two, we find that c=2cc=2c which is only possible if c=0c=0. Therefore, if k=0k=0, then c=0c=0. This implies that f(x)=0f(x)=0 is a solution.


Assume k=1k=1, then f(x)=x+cf(x)=x+c,

f(f(x+y))=f(x+y+c)=x+y+2c(LHS) \begin{aligned} \tag{LHS} f(f(x+y)) = f(x+y+c) = x+y+2c \end{aligned}f(x)+f(y)=x+c+y+c=x+y+2c(RHS) \begin{aligned} \tag{RHS} f(x) + f(y) &= x+c+y+c = x+y+2c \end{aligned}

Since the right and left hand side are equal, we have shown that f(x)=x+cf(x)=x+c is also a solution. \Box